In this article, we will examine the nature and utility of the first fundamental form, a quadratic form on a surface. Given a curve parametrized by \(u=u(t)\) and \(v=v(t)\) which lies on a surface \(X\) parametrized by \(X=X(u,v)\) we have that
$$ ds = |\frac{dX}{dt}| dt = |X_u \frac{du}{dt} + X_v \frac{dv}{dt}| dt = \sqrt{(X_u \dot{u} + X_v \dot{v}) \cdot (X_u \dot{u} + X_v \dot{v})} $$
Now defining the coefficients, called the First Fundamental Form coefficients E, F and G, we have
Read More